Ugrás a tartalomhoz

Early Prediction of Movie Box Office Success Based on Wikipedia Activity Big Data

  • Metaadatok
Tartalom: https://real.mtak.hu/202586/
Archívum: REAL
Gyűjtemény: Status = Published
Type = Article
Subject = Q Science / természettudomány: QA Mathematics / matematika: QA76.9.D343 Data mining and searching techniques / adatbányászati és keresési módszerek
Subject = Q Science / természettudomány: QA Mathematics / matematika: QA76.16-QA76.165 Communication networks, media, information society / kommunikációs hálózatok, média, információs társadalom
Cím:
Early Prediction of Movie Box Office Success Based on Wikipedia Activity Big Data
Létrehozó:
Mestyan, M.
Yasseri, T.
Kertész, János
Dátum:
2013
Téma:
QA76.16-QA76.165 Communication networks, media, information society / kommunikációs hálózatok, média, információs társadalom
QA76.9.D343 Data mining and searching techniques / adatbányászati és keresési módszerek
Tartalmi leírás:
Use of socially generated "big data" to access information about collective states of the minds in human societies has become a new paradigm in the emerging field of computational social science. A natural application of this would be the prediction of the society's reaction to a new product in the sense of popularity and adoption rate. However, bridging the gap between "real time monitoring" and "early predicting" remains a big challenge. Here we report on an endeavor to build a minimalistic predictive model for the financial success of movies based on collective activity data of online users. We show that the popularity of a movie can be predicted much before its release by measuring and analyzing the activity level of editors and viewers of the corresponding entry to the movie in Wikipedia, the well-known online encyclopedia.
Nyelv:
angol
Típus:
Article
PeerReviewed
info:eu-repo/semantics/article
Formátum:
text
Azonosító:
Mestyan, M. and Yasseri, T. and Kertész, János (2013) Early Prediction of Movie Box Office Success Based on Wikipedia Activity Big Data. PLOS ONE, 8 (8). ISSN 1932-6203
Kapcsolat:
MTMT:2697392 10.1371/journal.pone.0071226
Létrehozó:
cc_by