Kereső
Bejelentkezés
Kapcsolat
![]() |
A Rigidity Property of Complete Systems of Mutually Unbiased Bases |
Tartalom: | http://real.mtak.hu/149457/ |
---|---|
Archívum: | REAL |
Gyűjtemény: |
Status = Published
Subject = Q Science / természettudomány: QA Mathematics / matematika: QA74 Analysis / analízis Type = Article |
Cím: |
A Rigidity Property of Complete Systems of Mutually Unbiased Bases
|
Létrehozó: |
Matolcsi, Máté
Weiner, Mihály
|
Kiadó: |
World Scientific Publishing
|
Dátum: |
2021
|
Téma: |
QA74 Analysis / analízis
|
Tartalmi leírás: |
Suppose that for some unit vectors b(1), ... b(n) in C-d we have that for any j not equal k b(j) is either orthogonal to b(k) or vertical bar < b(j), b(k)>vertical bar(2) = 1/d (i.e., b(j) and b(k) are unbiased). We prove that if n = d(d + 1), then these vectors necessarily form a complete system of mutually unbiased bases, that is, they can be arranged into d + 1 orthonormal bases, all being mutually unbiased with respect to each other.
|
Nyelv: |
angol
|
Típus: |
Article
PeerReviewed
info:eu-repo/semantics/article
|
Formátum: |
text
|
Azonosító: |
Matolcsi, Máté and Weiner, Mihály (2021) A Rigidity Property of Complete Systems of Mutually Unbiased Bases. OPEN SYSTEMS & INFORMATION DYNAMICS, 28 (3). ISSN 1230-1612
|
Kapcsolat: |
MTMT:32583684 10.1142/S1230161221500128
|