Ugrás a tartalomhoz

A Rigidity Property of Complete Systems of Mutually Unbiased Bases

  • Metaadatok
Tartalom: http://real.mtak.hu/149457/
Archívum: REAL
Gyűjtemény: Status = Published
Subject = Q Science / természettudomány: QA Mathematics / matematika: QA74 Analysis / analízis
Type = Article
Cím:
A Rigidity Property of Complete Systems of Mutually Unbiased Bases
Létrehozó:
Matolcsi, Máté
Weiner, Mihály
Kiadó:
World Scientific Publishing
Dátum:
2021
Téma:
QA74 Analysis / analízis
Tartalmi leírás:
Suppose that for some unit vectors b(1), ... b(n) in C-d we have that for any j not equal k b(j) is either orthogonal to b(k) or vertical bar < b(j), b(k)>vertical bar(2) = 1/d (i.e., b(j) and b(k) are unbiased). We prove that if n = d(d + 1), then these vectors necessarily form a complete system of mutually unbiased bases, that is, they can be arranged into d + 1 orthonormal bases, all being mutually unbiased with respect to each other.
Nyelv:
angol
Típus:
Article
PeerReviewed
info:eu-repo/semantics/article
Formátum:
text
Azonosító:
Matolcsi, Máté and Weiner, Mihály (2021) A Rigidity Property of Complete Systems of Mutually Unbiased Bases. OPEN SYSTEMS & INFORMATION DYNAMICS, 28 (3). ISSN 1230-1612
Kapcsolat:
MTMT:32583684 10.1142/S1230161221500128