Kereső
Bejelentkezés
Kapcsolat
A Sharp Sobolev Interpolation Inequality on Finsler Manifolds |
Tartalom: | http://dx.doi.org/10.1007/s12220-014-9510-5 |
---|---|
Archívum: | REAL |
Gyűjtemény: |
Status = Published
Subject = Q Science / természettudomány: QA Mathematics / matematika: QA74 Analysis / analízis Subject = Q Science / természettudomány: QA Mathematics / matematika Subject = Q Science / természettudomány: QA Mathematics / matematika: QA73 Geometry / geometria Type = Article |
Cím: |
A Sharp Sobolev Interpolation Inequality on Finsler Manifolds
|
Létrehozó: |
Kristály, Alexandru
|
Dátum: |
2015
|
Téma: |
QA Mathematics / matematika
QA73 Geometry / geometria
QA74 Analysis / analízis
|
Tartalmi leírás: |
In this paper we study a sharp Sobolev interpolation inequality on Finsler
manifolds. We show that Minkowski spaces represent the optimal framework for the
Sobolev interpolation inequality on a large class of Finsler manifolds: (1) Minkowski
spaces support the sharp Sobolev interpolation inequality; (2) any complete Berwald
space with non-negative Ricci curvature which supports the sharp Sobolev interpolation
inequality is isometric to a Minkowski space. The proofs are based on properties
of the Finsler–Laplace operator and on the Finslerian Bishop–Gromov volume comparison
theorem.
|
Típus: |
Article
PeerReviewed
|
Formátum: |
text
|
Azonosító: |
Kristály, Alexandru (2015) A Sharp Sobolev Interpolation Inequality on Finsler Manifolds. Journal of Geometric Analysis, 25 (4). pp. 2226-2240. ISSN 1050-6926
|
Kapcsolat: |