Ugrás a tartalomhoz

A Sharp Sobolev Interpolation Inequality on Finsler Manifolds

  • Metaadatok
Tartalom: http://dx.doi.org/10.1007/s12220-014-9510-5
Archívum: REAL
Gyűjtemény: Status = Published
Subject = Q Science / természettudomány: QA Mathematics / matematika: QA74 Analysis / analízis
Subject = Q Science / természettudomány: QA Mathematics / matematika
Subject = Q Science / természettudomány: QA Mathematics / matematika: QA73 Geometry / geometria
Type = Article
Cím:
A Sharp Sobolev Interpolation Inequality on Finsler Manifolds
Létrehozó:
Kristály, Alexandru
Dátum:
2015
Téma:
QA Mathematics / matematika
QA73 Geometry / geometria
QA74 Analysis / analízis
Tartalmi leírás:
In this paper we study a sharp Sobolev interpolation inequality on Finsler manifolds. We show that Minkowski spaces represent the optimal framework for the Sobolev interpolation inequality on a large class of Finsler manifolds: (1) Minkowski spaces support the sharp Sobolev interpolation inequality; (2) any complete Berwald space with non-negative Ricci curvature which supports the sharp Sobolev interpolation inequality is isometric to a Minkowski space. The proofs are based on properties of the Finsler–Laplace operator and on the Finslerian Bishop–Gromov volume comparison theorem.
Típus:
Article
PeerReviewed
Formátum:
text
Azonosító:
Kristály, Alexandru (2015) A Sharp Sobolev Interpolation Inequality on Finsler Manifolds. Journal of Geometric Analysis, 25 (4). pp. 2226-2240. ISSN 1050-6926
Kapcsolat: