Kereső
Bejelentkezés
Kapcsolat
A bipolar Hardy inequality on Finsler manifolds |
Tartalom: | http://real.mtak.hu/101251/ |
---|---|
Archívum: | REAL |
Gyűjtemény: |
Status = Published
Subject = Q Science / természettudomány: QA Mathematics / matematika: QA74 Analysis / analízis Subject = Q Science / természettudomány: QA Mathematics / matematika Subject = Q Science / természettudomány: QA Mathematics / matematika: QA73 Geometry / geometria Type = Conference or Workshop Item |
Cím: |
A bipolar Hardy inequality on Finsler manifolds
|
Létrehozó: |
Mester, Ágnes
Kristály, Alexandru
|
Dátum: |
2019-05-29
|
Téma: |
QA Mathematics / matematika
QA73 Geometry / geometria
QA74 Analysis / analízis
|
Tartalmi leírás: |
We establish a bipolar Hardy inequality on complete,
not necessarily reversible Finsler manifolds. We show that
our result strongly depends on the geometry of the Finsler
structure, namely on the reversibility constant rF and the uniformity constant $l_F$. Our result represents a Finslerian counterpart of the Euclidean multipolar Hardy inequality due to Cazacu and Zuazua [3] and the Riemannian case considered by Faraci, Farkas and Krist'aly [5].
|
Nyelv: |
angol
|
Típus: |
Conference or Workshop Item
PeerReviewed
info:eu-repo/semantics/conferenceObject
|
Formátum: |
text
|
Azonosító: |
Mester, Ágnes and Kristály, Alexandru (2019) A bipolar Hardy inequality on Finsler manifolds. In: SACI 2019 : IEEE 13th Symposium on Applied Computational Intelligence and Informatics, 2019.05.29.-2019.05.31., Timisoara.
|
Kapcsolat: |