Ugrás a tartalomhoz

 

A bipolar Hardy inequality on Finsler manifolds

  • Metaadatok
Tartalom: http://real.mtak.hu/101251/
Archívum: REAL
Gyűjtemény: Status = Published
Subject = Q Science / természettudomány: QA Mathematics / matematika: QA74 Analysis / analízis
Subject = Q Science / természettudomány: QA Mathematics / matematika
Subject = Q Science / természettudomány: QA Mathematics / matematika: QA73 Geometry / geometria
Type = Conference or Workshop Item
Cím:
A bipolar Hardy inequality on Finsler manifolds
Létrehozó:
Mester, Ágnes
Kristály, Alexandru
Dátum:
2019-05-29
Téma:
QA Mathematics / matematika
QA73 Geometry / geometria
QA74 Analysis / analízis
Tartalmi leírás:
We establish a bipolar Hardy inequality on complete, not necessarily reversible Finsler manifolds. We show that our result strongly depends on the geometry of the Finsler structure, namely on the reversibility constant rF and the uniformity constant $l_F$. Our result represents a Finslerian counterpart of the Euclidean multipolar Hardy inequality due to Cazacu and Zuazua [3] and the Riemannian case considered by Faraci, Farkas and Krist'aly [5].
Nyelv:
angol
Típus:
Conference or Workshop Item
PeerReviewed
info:eu-repo/semantics/conferenceObject
Formátum:
text
Azonosító:
Mester, Ágnes and Kristály, Alexandru (2019) A bipolar Hardy inequality on Finsler manifolds. In: SACI 2019 : IEEE 13th Symposium on Applied Computational Intelligence and Informatics, 2019.05.29.-2019.05.31., Timisoara.
Kapcsolat: