Ugrás a tartalomhoz

A representation theorem for measurable relation algebras with cyclic groups

  • Metaadatok
Tartalom: http://real.mtak.hu/98569/
Archívum: REAL
Gyűjtemény: Status = Published
Subject = Q Science / természettudomány: QA Mathematics / matematika: QA72 Algebra / algebra
Type = Article
Cím:
A representation theorem for measurable relation algebras with cyclic groups
Létrehozó:
Andréka, Hajnal
Givant, Steven
Kiadó:
American Mathematical Society
Dátum:
2019
Téma:
QA72 Algebra / algebra
Tartalmi leírás:
A relation algebra is measurable if the identity element is a sum of atoms, and the square $ x;1;x$ of each subidentity atom $ x$ is a sum of non-zero functional elements. These functional elements form a group $ G_x$. We prove that a measurable relation algebra in which the groups $ G_x$ are all finite and cyclic is completely representable. A structural description of these algebras is also given.
Nyelv:
angol
Típus:
Article
PeerReviewed
info:eu-repo/semantics/article
Formátum:
text
Azonosító:
Andréka, Hajnal and Givant, Steven (2019) A representation theorem for measurable relation algebras with cyclic groups. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 371. pp. 7175-7198. ISSN 0002-9947
Kapcsolat:
MTMT:30637118 10.1090/tran/7566