Kereső
Bejelentkezés
Kapcsolat
|
|
A representation theorem for measurable relation algebras with cyclic groups |
| Tartalom: | http://real.mtak.hu/98569/ |
|---|---|
| Archívum: | REAL |
| Gyűjtemény: |
Status = Published
Subject = Q Science / természettudomány: QA Mathematics / matematika: QA72 Algebra / algebra Type = Article |
| Cím: |
A representation theorem for measurable relation algebras with cyclic groups
|
| Létrehozó: |
Andréka, Hajnal
Givant, Steven
|
| Kiadó: |
American Mathematical Society
|
| Dátum: |
2019
|
| Téma: |
QA72 Algebra / algebra
|
| Tartalmi leírás: |
A relation algebra is measurable if the identity element is a sum of atoms, and the square $ x;1;x$ of each subidentity atom $ x$ is a sum of non-zero functional elements. These functional elements form a group $ G_x$. We prove that a measurable relation algebra in which the groups $ G_x$ are all finite and cyclic is completely representable. A structural description of these algebras is also given.
|
| Nyelv: |
angol
|
| Típus: |
Article
PeerReviewed
info:eu-repo/semantics/article
|
| Formátum: |
text
|
| Azonosító: |
Andréka, Hajnal and Givant, Steven (2019) A representation theorem for measurable relation algebras with cyclic groups. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 371. pp. 7175-7198. ISSN 0002-9947
|
| Kapcsolat: |
MTMT:30637118 10.1090/tran/7566
|