Ugrás a tartalomhoz

Bounds on the 2-domination number

  • Metaadatok
Tartalom: http://real.mtak.hu/90073/
Archívum: REAL
Gyűjtemény: Status = Published
Subject = Q Science / természettudomány: QA Mathematics / matematika: QA71 Number theory / számelmélet
Type = Article
Cím:
Bounds on the 2-domination number
Létrehozó:
Bujtás, Csilla
Jaskó, Szilárd
Kiadó:
Elsevier
Dátum:
2018
Téma:
QA71 Number theory / számelmélet
Tartalmi leírás:
In a graph G, a set D⊆V(G) is called 2-dominating set if each vertex not in D has at least two neighbors in D. The 2-domination number γ2(G) is the minimum cardinality of such a set D. We give a method for the construction of 2-dominating sets, which also yields upper bounds on the 2-domination number in terms of the number of vertices, if the minimum degree δ(G) is fixed. These improve the best earlier bounds for any 6≤δ(G)≤21. In particular, we prove that γ2(G) is strictly smaller than n/2, if δ(G)≥6. Our proof technique uses a weight-assignment to the vertices where the weights are changed during the procedure. © 2017 Elsevier B.V.
Nyelv:
angol
Típus:
Article
PeerReviewed
info:eu-repo/semantics/article
Formátum:
text
Azonosító:
Bujtás, Csilla and Jaskó, Szilárd (2018) Bounds on the 2-domination number. DISCRETE APPLIED MATHEMATICS, 242 (19). pp. 4-15. ISSN 0166-218X
Kapcsolat:
MTMT:3279883 10.1016/j.dam.2017.05.014