Kereső
Bejelentkezés
Kapcsolat
![]() |
Bounds on the 2-domination number |
Tartalom: | http://real.mtak.hu/90073/ |
---|---|
Archívum: | REAL |
Gyűjtemény: |
Status = Published
Subject = Q Science / természettudomány: QA Mathematics / matematika: QA71 Number theory / számelmélet Type = Article |
Cím: |
Bounds on the 2-domination number
|
Létrehozó: |
Bujtás, Csilla
Jaskó, Szilárd
|
Kiadó: |
Elsevier
|
Dátum: |
2018
|
Téma: |
QA71 Number theory / számelmélet
|
Tartalmi leírás: |
In a graph G, a set D⊆V(G) is called 2-dominating set if each vertex not in D has at least two neighbors in D. The 2-domination number γ2(G) is the minimum cardinality of such a set D. We give a method for the construction of 2-dominating sets, which also yields upper bounds on the 2-domination number in terms of the number of vertices, if the minimum degree δ(G) is fixed. These improve the best earlier bounds for any 6≤δ(G)≤21. In particular, we prove that γ2(G) is strictly smaller than n/2, if δ(G)≥6. Our proof technique uses a weight-assignment to the vertices where the weights are changed during the procedure. © 2017 Elsevier B.V.
|
Nyelv: |
angol
|
Típus: |
Article
PeerReviewed
info:eu-repo/semantics/article
|
Formátum: |
text
|
Azonosító: |
Bujtás, Csilla and Jaskó, Szilárd (2018) Bounds on the 2-domination number. DISCRETE APPLIED MATHEMATICS, 242 (19). pp. 4-15. ISSN 0166-218X
|
Kapcsolat: |
MTMT:3279883 10.1016/j.dam.2017.05.014
|