Kereső
Bejelentkezés
Kapcsolat
![]() |
A proof of Pyber's base size conjecture |
Tartalom: | http://real.mtak.hu/86094/ |
---|---|
Archívum: | REAL |
Gyűjtemény: |
Status = Published
Subject = Q Science / természettudomány: QA Mathematics / matematika: QA72 Algebra / algebra Type = Article |
Cím: |
A proof of Pyber's base size conjecture
|
Létrehozó: |
Duyan, Hülya
Halasi, Zoltán
Maróti, Attila
|
Kiadó: |
ELSEVIER
|
Dátum: |
2018
|
Téma: |
QA72 Algebra / algebra
|
Tartalmi leírás: |
Building on earlier papers of several authors, we establish that
there exists a universal constant $c > 0$ such that the minimal base
size $b(G)$ of a primitive permutation group $G$ of degree $n$
satisfies $log |G| / log n leq b(G) < 45 (log |G| / log n) +
c$. This finishes the proof of Pyber's base size conjecture. An
ingredient of the proof is that for the distinguishing number $d(G)$
(in the sense of Albertson and Collins) of a transitive permutation
group $G$ of degree $n > 1$ we have the estimates $sqrt[n](|G|) <
d(G) leq 48 sqrt[n](|G|)$.
|
Nyelv: |
magyar
|
Típus: |
Article
PeerReviewed
info:eu-repo/semantics/article
|
Formátum: |
text
|
Azonosító: |
Duyan, Hülya and Halasi, Zoltán and Maróti, Attila (2018) A proof of Pyber's base size conjecture. ADVANCES IN MATHEMATICS, 331. pp. 720-747. ISSN 0001-8708
|
Kapcsolat: |
617747, 648017
|
Létrehozó: |
info:eu-repo/semantics/restrictedAccess
|