Kereső
Bejelentkezés
Kapcsolat
![]() |
A crossing Lemma for multigraphs |
Tartalom: | http://real.mtak.hu/82753/ |
---|---|
Archívum: | REAL |
Gyűjtemény: |
Status = Published
Type = Book Section Subject = Q Science / természettudomány: QA Mathematics / matematika: QA166-QA166.245 Graphs theory / gráfelmélet |
Cím: |
A crossing Lemma for multigraphs
|
Létrehozó: |
Pach, János
Tóth, Géza
|
Közreműködő: |
Tóth, Csaba D.
Speckmann, B.
|
Kiadó: |
Schloss Dagstuhl Leibniz-Zentrum für Informatik
|
Dátum: |
2018
|
Téma: |
QA166-QA166.245 Graphs theory / gráfelmélet
|
Tartalmi leírás: |
Let G be a drawing of a graph with n vertices and e > 4n edges, in which no two adjacent edges cross and any pair of independent edges cross at most once. According to the celebrated Crossing Lemma of Ajtai, Chvátal, Newborn, Szemerédi and Leighton, the number of crossings in G is at least ce3/n2, for a suitable constant c > 0. Ina seminal paper, Székely generalized this result to multigraphs, establishing the lower bound ce3/mn2, where m denotes the maximum multiplicity of an edge in G We get rid of the dependence on m by showing that, as in the original Crossing Lemma, the number of crossings is at least c'e3/n2 for some c' > 0, provided that the "lens" enclosed by every pair of parallel edges in G contains at least one vertex. This settles a conjecture of Bekos, Kaufmann, and Raftopoulou. © János Pach and Géza Tóth; licensed under Creative Commons License CC-BY 34th Symposium on Computational Geometry (SoCG 2018).
|
Nyelv: |
angol
|
Típus: |
Book Section
NonPeerReviewed
info:eu-repo/semantics/bookPart
|
Formátum: |
text
|
Azonosító: |
Pach, János and Tóth, Géza (2018) A crossing Lemma for multigraphs. In: 34th International Symposium on Computational Geometry, SoCG 2018. Leibniz International Proceedings in Informatics, LIPIcs (99). Schloss Dagstuhl Leibniz-Zentrum für Informatik, Dagstuhl, pp. 651-6513. ISBN 9783959770668
|
Kapcsolat: |
MTMT:3403153; doi:10.4230/LIPIcs.SoCG.2018.65
|