Ugrás a tartalomhoz

A geometric estimate on the norm of product of functionals

  • Metaadatok
Tartalom: http://real.mtak.hu/7955/
Archívum: REAL
Gyűjtemény: Status = Published
Subject = Q Science / természettudomány: QA Mathematics / matematika
Subject = Q Science / természettudomány: QA Mathematics / matematika: QA73 Geometry / geometria
Type = Article
Cím:
A geometric estimate on the norm of product of functionals
Létrehozó:
Matolcsi, Máté
Dátum:
2005
Téma:
QA Mathematics / matematika
QA73 Geometry / geometria
Tartalmi leírás:
The open problem of determining the exact value of the n-th linear polarization constant cn of Rn has received considerable attention over the past few years. This paper makes a contribution to the subject by providing a new lower bound on the value of supkyk=1 | hx1, yi · · · hxn, yi |, where x1, . . . , xn are unit vectors in Rn. The new estimate is given in terms of the eigenvalues of the Gram matrix [hxi, xji] and improves upon earlier estimates of this kind. However, the intriguing conjecture cn = n n/2 remains open.
Típus:
Article
PeerReviewed
Formátum:
text
Azonosító:
Matolcsi, Máté (2005) A geometric estimate on the norm of product of functionals. LINEAR ALGEBRA AND ITS APPLICATIONS, 405. pp. 304-310. ISSN 0024-3795
Kapcsolat: