Kereső
Bejelentkezés
Kapcsolat
![]() |
Divisibility of class numbers of imaginary quadratic fields whose discriminant has only three prime factors |
Tartalom: | http://dx.doi.org/10.1007/s10474-012-0226-3 |
---|---|
Archívum: | REAL |
Gyűjtemény: |
Status = Published
Subject = Q Science / természettudomány: QA Mathematics / matematika: QA71 Number theory / számelmélet Subject = Q Science / természettudomány: QA Mathematics / matematika Type = Article |
Cím: |
Divisibility of class numbers of imaginary quadratic fields whose discriminant has only three prime factors
|
Létrehozó: |
Lapkova, Kostadinka
|
Dátum: |
2012
|
Téma: |
QA Mathematics / matematika
QA71 Number theory / számelmélet
|
Tartalmi leírás: |
We prove the existence of infinitely many imaginary quadratic fields whose discriminant has exactly three distinct prime factors and whose class group has an element of a fixed large order. The main tool we use is solving an additive problem via the circle method. © 2012 Akadémiai Kiadó, Budapest, Hungary.
|
Típus: |
Article
PeerReviewed
|
Formátum: |
text
|
Azonosító: |
Lapkova, Kostadinka (2012) Divisibility of class numbers of imaginary quadratic fields whose discriminant has only three prime factors. Acta Mathematica Hungarica, 137 (1-2). pp. 36-63. ISSN 0236-5294 (print), 1588-2632 (online)
|
Kapcsolat: |