Ugrás a tartalomhoz

A composite functional equation from algebraic aspect

  • Metaadatok
Tartalom: http://real.mtak.hu/29492/
Archívum: REAL
Gyűjtemény: Status = Published
Subject = Q Science / természettudomány: QA Mathematics / matematika: QA72 Algebra / algebra
Subject = Q Science / természettudomány: QA Mathematics / matematika: QA74 Analysis / analízis
Type = Article
Cím:
A composite functional equation from algebraic aspect
Létrehozó:
Burai, Pál
Házy, Attila
Juhász, Tibor
Kiadó:
Birkhäuser Basel
Dátum:
2013
Téma:
QA72 Algebra / algebra
QA74 Analysis / analízis
Tartalmi leírás:
In this paper we discuss the composite functional equation f(x+2f(y))=f(x)+y+f(y) on an Abelian group. This equation originates from Problem 10854 of the American Mathematical Monthly. We give an algebraic description of the solutions on uniquely 3-divisible Abelian groups, and then we construct all solutions f of this equation on finite Abelian groups without elements of order 3 and on divisible Abelian groups without elements of order 3 including the additive group of real numbers.
Nyelv:
angol
Típus:
Article
PeerReviewed
Formátum:
text
Azonosító:
Burai, Pál and Házy, Attila and Juhász, Tibor (2013) A composite functional equation from algebraic aspect. Aequationes Mathematicae, 86 (1-2). pp. 57-64. ISSN 0001-9054 (print version), 1420-8903 (electronic version)
Kapcsolat:
DOI 10.1007/s00010-013-0211-0