Ugrás a tartalomhoz

An analytical deep learning framework for interpretable author similarity and research collaboration

  • Metaadatok
Tartalom: https://unipub.lib.uni-corvinus.hu/11932/
Archívum: Corvinus Kutatások
Gyűjtemény: Status = Published
Subject = Computer science
Subject = Automatizálás, gépesítés
Subject = Mathematics, Econometrics
Type = Article
Cím:
An analytical deep learning framework for interpretable author similarity and research collaboration
Létrehozó:
Asemi, Asefeh
Houshangi, Mahdi
Houshangi, Narjes
Kiadó:
Elsevier
Dátum:
2025
Téma:
Automatizálás, gépesítés
Mathematics, Econometrics
Computer science
Tartalmi leírás:
This study proposes a hybrid framework combining Deep Learning (DL) and Fuzzy Multi-Criteria DecisionMaking (MCDM) to evaluate author similarity and enhance collaboration in bioinformatics research. The model integrates structured expert judgment through the Analytic Hierarchy Process (AHP) and Fuzzy Delphi Method (FDM) with domain-specific Natural Language Processing (NLP) using Bidirectional Encoder Representations from Transformers for Biomedical Text Mining (BioBERT) embeddings. Key evaluation criteria include citation similarity (highest weight), content similarity (titles, abstracts, keywords), coauthorship history, institutional affiliation, field alignment, and journal venue overlap. These factors are weighted by consensus and aggregated into a transparent scoring formula. Validated on biomedical informatics data, the framework demonstrates strong performance in identifying Potentially Associated Author (PAA), achieving 0.89 precision@10 and 0.82 ranking stability (Jaccard Index). The approach uniquely bridges semantic analysis (via BioBERT) and expert-driven evaluation, offering interpretable, adaptable author recommendations tailored to bioinformatics' interdisciplinary challenges.
Nyelv:
angol
angol
Típus:
Article
PeerReviewed
Formátum:
application/pdf
Azonosító:
Asemi, Asefeh ORCID: https://orcid.org/0000-0003-1667-4408 <https://orcid.org/0000-0003-1667-4408>, Houshangi, Mahdi ORCID: https://orcid.org/0000-0002-5406-1162 <https://orcid.org/0000-0002-5406-1162> and Houshangi, Narjes ORCID: https://orcid.org/0000-0003-4322-8470 <https://orcid.org/0000-0003-4322-8470> (2025) An analytical deep learning framework for interpretable author similarity and research collaboration. Decision Analytics Journal . DOI 10.1016/j.dajour.2025.100645 <https://doi.org/10.1016/j.dajour.2025.100645>
Kapcsolat:
10.1016/j.dajour.2025.100645