Ugrás a tartalomhoz

 

Optimizing Cardiac MRI Segmentation: An Ensemble Approach with U-Net Variants

  • Metaadatok
Tartalom: http://hdl.handle.net/10890/58918
Archívum: Műegyetem Digitális Archívum
Gyűjtemény: 1. Tudományos közlemények, publikációk
Konferenciák gyűjteményei
Workshop on Intelligent Infocommunication Networks, Systems and Services
3rd Workshop on Intelligent Infocommunication Networks, Systems and Services, 2025
Cím:
Optimizing Cardiac MRI Segmentation: An Ensemble Approach with U-Net Variants
Létrehozó:
Bárdos-Deák, Botond
Bodai, Adrián Tibor
Al-Radhi, Mohammed Salah
Dátum:
2025-02-20T13:52:00Z
2025-02-20T13:52:00Z
2025
Tartalmi leírás:
Segmentation of cardiac magnetic resonance images is a critical task in medical imaging, particularly to delineate the left and right ventricles and the myocardium. This study aims to improve segmentation performance using an ensemble approach with variants of the U-Net architecture, a widely adopted deep learning model for image segmentation. Multiple segmentation models were trained and optimized, and their outputs were combined using threshold-based binary conversion. Two ensemble strategies were evaluated: (1) Averaging, where the mean value of the binary masks at each pixel location was calculated to smooth discrepancies among model predictions, and (2) Voting, where majority voting determined the final pixel classification. The proposed ensemble approach demonstrates robustness to individual model errors and improves segmentation consistency.
Nyelv:
angol
Típus:
Könyvfejezet
Formátum:
application/pdf
Azonosító: