Kereső
Bejelentkezés
Kapcsolat
![]() |
BiometricBlender : Ultra-high dimensional, multi-class synthetic data generator to imitate biometric feature space |
Tartalom: | https://unipub.lib.uni-corvinus.hu/10434/ |
---|---|
Archívum: | Corvinus Kutatások |
Gyűjtemény: |
Status = Published
Subject = Computer science Subject = Automatizálás, gépesítés Type = Article |
Cím: |
BiometricBlender : Ultra-high dimensional, multi-class synthetic data generator to imitate biometric feature space
|
Létrehozó: |
Stippinger, Marcell
Hanák, Dávid
Kurbucz, Marcell Tamás
Hanczár, G.
Törteli, O.M.
Somogyvári, Zoltán
|
Kiadó: |
Elsevier
|
Dátum: |
2023
|
Téma: |
Automatizálás, gépesítés
Computer science
|
Tartalmi leírás: |
The lack of freely available (real-life or synthetic) high or ultra-high dimensional, multi-class datasets may hamper the rapidly growing research on feature screening, especially in the field of biometrics, where the usage of such datasets is common. This paper reports a Python package called BiometricBlender, which is an ultra-high dimensional, multi-class synthetic data generator to benchmark a wide range of feature screening methods. During the data generation process, the overall usefulness and the intercorrelations of blended features can be controlled by the user, thus the synthetic feature space is able to imitate the key properties of a real biometric dataset.
|
Nyelv: |
angol
angol
|
Típus: |
Article
PeerReviewed
|
Formátum: |
application/pdf
|
Azonosító: |
Stippinger, Marcell ORCID: https://orcid.org/0000-0002-9954-8089 <https://orcid.org/0000-0002-9954-8089>, Hanák, Dávid, Kurbucz, Marcell Tamás ORCID: https://orcid.org/0000-0002-0121-6781 <https://orcid.org/0000-0002-0121-6781>, Hanczár, G., Törteli, O.M. and Somogyvári, Zoltán (2023) BiometricBlender : Ultra-high dimensional, multi-class synthetic data generator to imitate biometric feature space. Softwarex, 22 . DOI 10.1016/j.softx.2023.101366 <https://doi.org/10.1016/j.softx.2023.101366>
|
Kapcsolat: |
10.1016/j.softx.2023.101366
|