Kereső
Bejelentkezés
Kapcsolat
Adversarial Localization Algorithms in Indirect Vehicle-to-Vehicle Communication |
| Tartalom: | http://hdl.handle.net/10890/55178 |
|---|---|
| Archívum: | Műegyetem Digitális Archívum |
| Gyűjtemény: |
1. Tudományos közlemények, publikációk
Konferenciák gyűjteményei BME MIT PhD Minisymposium BME MIT PhD Minisymposium, 2024, 31th |
| Cím: |
Adversarial Localization Algorithms in Indirect Vehicle-to-Vehicle Communication
|
| Létrehozó: |
Alekszejenkó, Levente
Dobrowiecki, Tadeusz P.
|
| Dátum: |
2024-04-30T14:07:42Z
2024-04-30T14:07:42Z
2024
|
| Tartalmi leírás: |
Communicating autonomous vehicles (CAVs) can obtain direct measurements from their sensors or indirectly receive them via Vehicle-to-Vehicle (V2V) communication. As the CAVs are expected to share a part of their measurements, it can naturally pose a privacy threat by possibly revealing the route of the sender vehicle. Consequently, we shall assess the risks of sharing a dataset that is a mixture of direct and indirect measurements. However, a wide variety of papers focus on localization attacks for direct measurements; incorporating indirect measurements opens a new horizon for these researches. In this paper, we analyze a couple of localization algorithms for mixture datasets with applicable performance metrics. We have evaluated the algorithms in an Eclipse SUMO-based simulation. We consider these results as the baseline of future research.
|
| Nyelv: |
angol
|
| Típus: |
könyvfejezet
|
| Formátum: |
application/pdf
|
| Azonosító: |