Kereső
Bejelentkezés
Kapcsolat
Model-centric data selection: Refining end-to-end speech recognition |
Tartalom: | http://hdl.handle.net/10890/54980 |
---|---|
Archívum: | Műegyetem Digitális Archívum |
Gyűjtemény: |
1. Tudományos közlemények, publikációk
Konferenciák gyűjteményei 2nd Workshop on Intelligent Infocommunication Networks, Systems and Services, 2024 |
Cím: |
Model-centric data selection: Refining end-to-end speech recognition
|
Létrehozó: |
Kedalai, Meng
Meng, Yan
Mihajlik, Péter
|
Dátum: |
2024-02-26T15:41:54Z
2024-02-26T15:41:54Z
2024
|
Tartalmi leírás: |
Data selection can be an important step in pre-processing datasets for Automatic Speech Recognition (ASR) -- still its application is not general. In order to handle potential labeling errors and other anomalies in the dataset, we introduced a simple model-centric speech data selection strategy. It discards samples in the dataset that is difficult to recognize by the model, and use a restricted dataset to retrain the model. This technique improved the recognition accuracy of Hungarian ASR both on the BEA-Base and Common Voice (CV) datasets by using the Conformer model architecture. The proposed approach achieved a consistent relative improvement in terms of both Character and Word Error Rates (CER, WER), up to (3%, 2.5%).
|
Nyelv: |
angol
|
Típus: |
Konferenciaközlemény
|
Formátum: |
application/pdf
|
Azonosító: |