Ugrás a tartalomhoz

 

Advanced Metaheuristics for Optimization
Erweiterte Metaheuristik zur Optimierung

  • Metaadatok
Tartalom: https://hdl.handle.net/2437/365770
Archívum: DEA PhD
Gyűjtemény: PhD dolgozatok
Informatikai Tudományok Doktori Iskola
Cím:
Advanced Metaheuristics for Optimization
Erweiterte Metaheuristik zur Optimierung
Létrehozó:
Sabagh Nejad, Anahita
Közreműködő:
Fazekas, Gabor
Informatikai tudományok doktori iskola
Informatikai Kar
Dátum:
2024-01-31T10:01:01Z
2024-01-31T10:01:01Z
2024-01-29
2024-01-29
Téma:
Metaheuristics
TSP
K-means
Whale algorithm
Optimization
Informatikai tudományok
Műszaki tudományok
Tartalmi leírás:
The main purpose of this dissertation is to introduce two new advanced methods of solving a Traveling salesman problem (TSP) using metaheuristics. Solving TSP is important as it is an NP-hard and can’t be solved in a polynomial time. In my new methods, I applied k-means to cluster the data into smaller parts and I used the Whale Optimization algorithm (WOA) as a bio-inspired algorithm. I merged TSP with K-means and WOA, and I assigned a number for thresholding (T- value) to decide the maximum number of cities that can be placed in each cluster. This way the fitness function and timing of solving TSP improved. The two methods have close pseudocodes. There is a third model as well that is proposed for future works.
Nyelv:
angol
Formátum:
application/pdf
application/pdf
174
application/pdf
application/pdf
Azonosító: