Kereső
Bejelentkezés
Kapcsolat
![]() |
A Global Multi-Temporal Dataset with STGAN Baseline for Cloud and Cloud Shadow Removal |
Tartalom: | https://eprints.sztaki.hu/10650/ |
---|---|
Archívum: | SZTAKI Repozitórium |
Gyűjtemény: |
Status = Published
Type = Book Section |
Cím: |
A Global Multi-Temporal Dataset with STGAN Baseline for Cloud and Cloud Shadow Removal
|
Létrehozó: |
Zhu, Morui
Liu, Chang
Szirányi, Tamás
|
Kiadó: |
SciTePress Science and Technology Publications, Lda
|
Dátum: |
2023
|
Téma: |
QA75 Electronic computers. Computer science / számítástechnika, számítógéptudomány
|
Tartalmi leírás: |
Due to the inevitable contamination of thick clouds and their shadows, satellite images are greatly affected, which significantly reduces the usability of data from satellite images. Therefore, obtaining high-quality image data without cloud contamination in a specific area and at the time we need it is an important issue. To address this problem, we collected a new multi-temporal dataset covering the entire globe, which is used to remove clouds and their shadows. Since generative adversarial networks (GANs) perform well in conditional image synthesis challenges, we utilized a spatial-temporal GAN (STGAN) to eliminate clouds and their shadows in optical satellite images. As a baseline model, STGAN demonstrated outstanding performance in peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM), achieving scores of 33.4 and 0.929, respectively. The cloud-free images generated in this work have significant utility for various downstream applications in real-world environments. Dataset is publicly available: https://github.com/zhumorui/SMT-CR
|
Nyelv: |
angol
|
Típus: |
Book Section
PeerReviewed
|
Formátum: |
text
|
Azonosító: | |
Kapcsolat: |
10.5220/0012039600003497
|