Kereső
Bejelentkezés
Kapcsolat
(1 + 1 + 2)-generated lattices of quasiorders |
Tartalom: | http://acta.bibl.u-szeged.hu/75848/ |
---|---|
Archívum: | SZTE Egyetemi Kiadványok Repozitórium |
Gyűjtemény: |
Tipus = Cikk, tanulmány, mű
Szakterület = 01. Természettudományok: 01.01. Matematika Szakterület = 01. Természettudományok |
Cím: |
(1 + 1 + 2)-generated lattices of quasiorders
|
Létrehozó: |
Ahmed Delbrin
Czédli Gábor
|
Dátum: |
2021
|
Téma: |
01. Természettudományok
01.01. Matematika
|
Tartalmi leírás: |
A lattice is (1 + 1 + 2)-generated if it has a four-element generating set such that exactly two of the four generators are comparable. We prove that the lattice Quo(n) of all quasiorders (also known as preorders) of an n-element set is (1 + 1 + 2)-generated for n = 3 (trivially), n = 6 (when Quo(6) consists of 209 527 elements), n = 11, and for every natural number n ≥ 13. In 2017, the second author and J. Kulin proved that Quo(n) is (1 + 1 + 2)-generated if either n is odd and at least 13 or n is even and at least 56. Compared to the 2017 result, this paper presents twenty-four new numbers n such that Quo(n) is (1 + 1 + 2)-generated. Except for Quo(6), an extension of Zádori’s method is used.
|
Nyelv: |
magyar
angol
|
Típus: |
Cikk, tanulmány, mű
NonPeerReviewed
|
Formátum: |
part
|
Azonosító: |
Ahmed Delbrin; Czédli Gábor: (1 + 1 + 2)-generated lattices of quasiorders. In: Acta scientiarum mathematicarum, (87) 3-4. pp. 415-427. (2021)
|
Kapcsolat: |