Ugrás a tartalomhoz

 

(1 + 1 + 2)-generated lattices of quasiorders

  • Metaadatok
Tartalom: http://acta.bibl.u-szeged.hu/75848/
Archívum: SZTE Egyetemi Kiadványok Repozitórium
Gyűjtemény: Tipus = Cikk, tanulmány, mű
Szakterület = 01. Természettudományok: 01.01. Matematika
Szakterület = 01. Természettudományok
Cím:
(1 + 1 + 2)-generated lattices of quasiorders
Létrehozó:
Ahmed Delbrin
Czédli Gábor
Dátum:
2021
Téma:
01. Természettudományok
01.01. Matematika
Tartalmi leírás:
A lattice is (1 + 1 + 2)-generated if it has a four-element generating set such that exactly two of the four generators are comparable. We prove that the lattice Quo(n) of all quasiorders (also known as preorders) of an n-element set is (1 + 1 + 2)-generated for n = 3 (trivially), n = 6 (when Quo(6) consists of 209 527 elements), n = 11, and for every natural number n ≥ 13. In 2017, the second author and J. Kulin proved that Quo(n) is (1 + 1 + 2)-generated if either n is odd and at least 13 or n is even and at least 56. Compared to the 2017 result, this paper presents twenty-four new numbers n such that Quo(n) is (1 + 1 + 2)-generated. Except for Quo(6), an extension of Zádori’s method is used.
Nyelv:
magyar
angol
Típus:
Cikk, tanulmány, mű
NonPeerReviewed
Formátum:
part
Azonosító:
Ahmed Delbrin; Czédli Gábor: (1 + 1 + 2)-generated lattices of quasiorders. In: Acta scientiarum mathematicarum, (87) 3-4. pp. 415-427. (2021)
Kapcsolat: