Kereső
Bejelentkezés
Kapcsolat
![]() |
Computer-assisted Existence Proofs for One-dimensional Schrödinger-Poisson Systems |
Tartalom: | https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/4034 |
---|---|
Archívum: | Acta Cybernetica |
Gyűjtemény: | Uncertainty Modeling, Software, Verified Computing and Optimization |
Cím: |
Computer-assisted Existence Proofs for One-dimensional Schrödinger-Poisson Systems
|
Létrehozó: |
Wunderlich, Jonathan
Plum, Michael
|
Kiadó: |
University of Szeged, Institute of Informatics
|
Dátum: |
2020-03-16
|
Téma: |
computer-assisted proof
existence
enclosure
Schrödinger-Poisson system
|
Tartalmi leírás: |
Motivated by the three-dimensional time-dependent Schrödinger-Poisson system we prove the existence of non-trivial solutions of the one-dimensional stationary Schrödinger-Poisson system using computer-assisted methods.
Starting from a numerical approximate solution, we compute a bound for its defect, and a norm bound for the inverse of the linearization at the approximate solution. For the latter, eigenvalue bounds play a crucial role, especially for the eigenvalues "close to" zero. Therefor, we use the Rayleigh-Ritz method and a corollary of the Temple-Lehmann Theorem to get enclosures of the crucial eigenvalues of the linearization below the essential spectrum.
With these data in hand, we can use a fixed-point argument to obtain the desired existence of a non-trivial solution "nearby" the approximate one. In addition to the pure existence result, the used methods also provide an enclosure of the exact solution.
|
Nyelv: |
angol
|
Típus: |
info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
|
Formátum: |
application/pdf
|
Azonosító: |
10.14232/actacyb.24.3.2020.6
|
Forrás: |
Acta Cybernetica; Vol 24 No 3 (2020): Special Issue of the 11th Summer Workshop on Interval Methods; 373-391
2676-993X
0324-721X
|
Kapcsolat: |