Ugrás a tartalomhoz

 

3D CNN Based Phantom Object Removing from Mobile Laser Scanning Data

  • Metaadatok
Tartalom: http://eprints.sztaki.hu/9065/
Archívum: SZTAKI Repozitórium
Gyűjtemény: Status = Published
Type = Conference or Workshop Item
Cím:
3D CNN Based Phantom Object Removing from Mobile Laser Scanning Data
Létrehozó:
Nagy, Balázs
Benedek, Csaba
Dátum:
2017-05-14
Téma:
QA75 Electronic computers. Computer science / számítástechnika, számítógéptudomány
Tartalmi leírás:
In this paper we introduce a new deep learning based approach to detect and remove phantom objects from point clouds produced by mobile laser scanning (MLS) systems. The phantoms are caused by the presence of scene objects moving concurrently with the MLS platform, and appear as long, sparse but irregular point cloud segments in the measurements. We propose a new 3D CNN framework working on a voxelized column-grid to identify the phantom regions. We quantitatively evaluate the proposed model on real MLS test data, and compare it to two different reference approaches.
Nyelv:
magyar
Típus:
Conference or Workshop Item
PeerReviewed
Formátum:
text
Azonosító:
Kapcsolat: